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Abstract

Computational models of particle dynamics often exchange solution data with discretized

continuum-fields using interpolation functions. These particle methods require a series expansion

of the interpolation function for two purposes: numerical analysis used to establish the model’s

consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid.

This report presents discrete-expansions for a linear interpolation function commonly used within

triangular cell geometries. Discrete-expansions, unlike a Taylor’s series, account for interpolation

discontinuities across cell boundaries and, therefore, are valid throughout a discretized domain.

Verification of linear discrete-expansions is demonstrated on a simple test problem.
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Integrating a Linear Interpolation Function
Across Triangular Cell Boundaries

Introduction

Particle methods, computational models of particle dynamics, are often solved

concurrently with discretized continuum-field equations. Interactive particle methods, including

models of liquid sprays, bubble dynamics, and material-interface tracking, strongly couple the

governing equations through the bilateral exchange of mass, momentum, and energy. In contrast,

reactive particle methods, including models of atmospheric transport, porous-media diffusion,

and transient mixing, weakly couple the governing equations; reactive particles simply respond to

the entraining continuum field. Another reactive method, used extensively for solution

visualization, free-surface tracking, and front tracking, is the tracer-particle method which advects

a massless particle with an interpolated velocity. Both interactive and reactive particle methods

exchange data with discrete fields using interpolation functions. The focus of this research was on

the role of one linear interpolation function commonly used within particle methods.

Particle methods often use interpolation functions directly to evaluate terms in their

governing equations. A Taylor’s series of the interpolation function, expanded from the particle’s

cell, is required to perform analytical studies of these numerical methods. The numerical analyses

include establishing the model’s mathematical consistency and numerical accuracy. The particle’s

equations, including kinematic equations-of-motion, are often numerically integrated using multi-

step methods such as Runge-Kutta methods. The interpolated quantities within the particle’s

discretized governing equations may be evaluated in a neighboring cell, and the required

interpolation expansion would then extend through multiple cells in the grid. Derivatives of

interpolation functions, however, are generally not continuous across cell boundaries and,

therefore, a Taylor’s series is not valid in this situation. An alternative expansion for linear

interpolation functions is required to complete numerical analyses for these particle methods.

Particle methods also often use interpolation functions indirectly to evaluate particle-grid

connectivity data: the identity of the grid cell in which the particle resides and the particle’s

logical-coordinate position vector relative to that cell. Particle localization establishes this data

using cell-searching and logical-coordinate evaluation methods [1-7]. Cell-searching methods

typically use the particle’s logical coordinates to both direct and halt the search. Logical-

coordinate evaluation involves transforming a physical-space position vector into a local

coordinate system, and, as described below, existing methods are based on interpolation

expansions. Particle methods, therefore, require interpolation expansions for numerical analysis

and localization, and the mathematical expression required for both purposes is identical.



LA-UR-00-3330

2

While multi-cell Taylor’s series of interpolation functions are generally not valid for

numerical analyses, modified versions of these expansions are used for particle localization. For

spatial-transformation, the arguments of the interpolation function are logical-coordinate and cell-

vertex coordinate vectors. Existing logical-coordinate evaluation methods, generalized in

Reference [1] for various cell geometries, were developed from a truncated, single-variable

Taylor’s series expansion of the interpolation function [1,3,5-7]. The modified Taylor’s series

avoids discontinuous interpolation derivatives across cell boundaries by ignoring the function’s

dependence on cell-vertex coordinates. Furthermore, non-linear spatial-transformation problems

are linearized by only considering the interpolation function’s first-order dependence on logical

coordinates. The iterative solution of the resulting system of equations is, however, neither

algorithmically robust nor computationally efficient. An alternative expansion for linear

interpolation functions is required for robust and efficient particle localization methods.

An alternative type of expansion, a discrete-expansion, was recently proposed and

validated for multi-linear interpolation functions [8-10]. Discrete-expansions are similar to multi-

variable expansions but, unlike a Taylor’s series, they are valid throughout a discretized domain.

Discrete-expansions are valid for numerical analyses since they acknowledge the full functional

dependence of interpolation and account for discontinuous derivatives across cell boundaries.

Furthermore, the solution of discrete-expansions for logical-coordinate evaluation is both

algorithmically robust and computationally efficient. Using a simple finite-difference technique, a

single discrete-expansion was developed for trilinear interpolation defined within three-

dimensional hexahedral cells [8,9]. Multiple discrete-expansions were recently developed for

bilinear interpolation defined within quadrilateral cells [10]. These two-dimensional discrete-

expansions were developed using a general total-differential technique.

This report presents the development of discrete-expansions for linear interpolation

defined within two-dimensional triangular cell geometries. This report serves as a companion

paper to Reference [10] where the bilinear discrete-expansions were presented. This report will

show that the new discrete-expansions are a simplification of the trilinear and bilinear expansions;

linear interpolation is more simple than a multi-linear function. The unique formulations of

discrete-expansions for linear interpolation, however, will also be identified. This report continues

by parametrically integrating the linear interpolation function’s total-differential between two

particles located in separate, non-contiguous grid cells. Application of the new linear

interpolation expansions for numerical analysis or localization within particle methods is beyond

the scope of this report. The utility of discrete-expansions for these purposes, however, is outlined

and discussed in Reference [10]. A summary concludes this report, and then an appendix presents

a test problem, which clearly demonstrates the validity of linear discrete-expansions.
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Linear Interpolation

Two-dimensional computational space is frequently discretized into triangular cells,

particularly around complex geometries. Linear functions are often applied within these cells for

both data interpolation and spatial-transformation. Interpolation produces a continuous mapping

of discrete continuum-field data, often located at cell-vertices, to any position within the cell.

Spatial transformation includes mapping computational cell geometries from a physical-space,

, to a logical-space, , coordinate system; see Figure 1. The linear

interpolation function is dependent upon both  and the cell-vertex (cv) coordinate vector,

, as presented in Equation 1.

(1)

Equation 1 is linear with respect to both the logical-coordinates, , and cell-vertex

coordinates, . While the physical coordinates of the triangle’s vertices are arbitrary, the

transformed coordinates are bound by , , and . Linear interpolation within

one-dimensional line-elements may be obtained from Equation 1 by setting .

Total Differential

Using the interpolation function, , the objective is to establish a relationship

between the finite change of the physical coordinates, , the logical coordinates, , and the

cell-vertex coordinates, . The function’s total-differential provides a relationship between

infinitesimal changes of these coordinates, , as presented in Equation 2.

(2)

Integration of Equation 2 between two particle end-states will provide the relationship

, which functionally represents a discrete-expansion for interpolation.

Logical Coordinate Derivative
The linear interpolation function’s total-differential includes two first-order derivatives or

transformation matrices that are scaled by differential-coordinate vectors. The first derivative in

Equation 2 represents a coordinate-transformation or Jacobian matrix, . The Jacobian

matrix’s square structure is defined in Equation 3 for a two-dimensional transformation.
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(3)

The size of the Jacobian matrix is determined by the number of spatial dimensions.

Elements of the coordinate-transformation matrix are most easily defined using column vectors.

For two-dimensional linear interpolation, these derivatives are presented in Equation 4.

(4)

Each derivative within Equation 4 is a linear function of the cell-vertex coordinates. The

Jacobian matrix for two-dimensional linear interpolation, which combines these column vectors,

is, therefore, a linear function with respect to : .

Cell-Vertex Coordinate Derivative
The second derivative in the linear interpolation function’s total-differential, Equation 2,

represents a geometry-transformation matrix. The matrix structure of , the cell-vertex

coordinate derivative, is defined in Equation 5 for triangular cell geometries.

(5)

The number of rows and columns in the non-square geometry-transformation matrix are

determined by the problem dimension size and the number of elements within the cell-vertex

coordinate vector, . The size of  is equal to the number of spatial dimensions multiplied

by the number of cell vertices. The geometry-transformation matrix may be partitioned into sub-

matrices, which are each associated with a cell-vertex position ‘v’ as presented in Equation 6.

(6)
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The square structure and size of each partition within the geometry-transformation matrix

are similar to the Jacobian matrix, Equation 3. In contrast to the full Jacobian matrix, however,

each of the sub-matrices within  are diagonal as presented in Equation 7.

(7)

The non-zero elements of the sub-matrices within  are most easily defined for

each cell-vertex position. These elements,  and , are the basis functions used

within the two-dimensional linear interpolation function as presented in Equation 8.

(8)

For each cell-vertex position, the non-zero derivatives are identical: .

Each sub-matrix may then be defined as an identity matrix scaled by an interpolation basis

function. The derivatives within Equation 8 are linear functions of the logical-coordinates. The

geometry-transformation matrix for two-dimensional linear interpolation, which combines these

column vectors, is, therefore, a linear function with respect to : .

Since linear interpolation is linear with respect to both  and , the transformation

matrices, first-order derivatives, are functions of only one variable; the coordinate-transformation

matrix is only a function of  and the geometry-transformation matrix is only a function of .

The linear interpolation function’s simplified total-differential is presented in Equation 9.

(9)

Integration Method

The objective is to integrate the linear function’s total-differential, Equation 9, to obtain a

discrete-expansion for interpolation: . The integration limits are two particles
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located in separate grid cells: State 1, , and State 2, . The

computational sub-domains in which the particles reside are not desired to be connected in

physical-space. Integration of the total-differential is represented in Equation 10.

(10)

The linearity and continuity of the derivatives in the total-differential affect the integration

process used to obtain a discrete-expansion. The linearity of the interpolation derivatives

determines the complexity of the integration process. For linear interpolation, the coordinate-

transformation and geometry-transformation matrices are linear with respect to  or . More

importantly, continuity of the interpolation derivatives is required for the total-differential to be

valid within a specified region. Solution of Equation 10 in a single cell is straightforward; the

interpolation derivatives are guaranteed to be continuous in this region. In contrast, if the limits of

integration cross a cell boundary, solution of Equation 10 is more complex.

Solution of Equation 10 between particles located in separate but adjoining cells involves

integrating the total-differential through two unique coordinate systems. While the form of the

interpolation expression is identical for each cell, the two functions are different; they have

distinct cell-vertex coordinate vectors. Along their common cell-edge, linear interpolation

functions are continuous but their derivatives are generally discontinuous. Direct integration of

the total-differential is, therefore, not possible along any pathline that crosses a cell boundary.

Discrete-expansions may be obtained from Equation 10 if the integration pathline is partitioned or

if the integration coordinate-space is appropriately parameterized.

An integration pathline that passes between adjoining cells may be partitioned into two

line-segments, each defined within a separate coordinate system. The integrals within Equation

10 are similarly partitioned into cell-based segments along which the interpolation derivatives are

guaranteed to be continuous. Integration along this two-segment pathline would proceed within

the first cell from State 1 to the common cell edge, then within the second cell to State 2. While

this procedure represents a valid method of solution for Equation 10, it is algorithmically complex

and computationally expensive. Furthermore, if the particle end-states are located within non-

contiguous grid cells, this solution method is prohibitively complex and expensive.

Parameterization
Alternatively, the coordinate-space between the limits of integration can be parameterized.

Parameterization removes the concept of multiple coordinate systems and, thus, discontinuous
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interpolation derivatives across cell boundaries, by creating a single coordinate-space between

two particles. The integration end-states can then be defined within any two cells, including non-

contiguous cells. While the form of the parameterization function is arbitrary, it must be

differentiable; it is embedded within the parameterized interpolation function. Derivatives of the

parameterized interpolation function are then guaranteed to be continuous. The parameterized

total-differential, therefore, may be integrated without requiring a partitioned pathline.

To create a single coordinate-space between two particles, each of the physical, logical,

and cell-vertex coordinates must be parameterized; particle states are a collection of these vectors.

A simple linear technique using the variable ‘s’, where , was selected in this research.

The parameterized coordinates, ,  and , then vary linearly along any integration

pathline. Integration limits for the parameterized total-differential are the bounding limits of the

variable ‘s’. Integration of the parameterized total-differential is represented in Equation 11.

(11)

Solution of Equation 11 requires an integration pathline defined between the particle

States 1 and 2. The only restriction on the limits of integration are that the end-state variables

form a consistent set of coordinates as described by the interpolation function: .

The integration pathline for the parameterized total-differential traverses through the 

plane since these vectors are the arguments of the spatial-transformation function. The

parameterization function, however, does not prescribe the shape of the integration pathline.

Three pathlines, commonly used for parameterized integration problems, were selected by this

research to solve Equation 11: direct, upper-step, and lower-step integration pathlines.

Direct Integration Pathline
The first integration pathline used to solve Equation 11 is a straight or direct line between

particle States 1 and 2; see Figure 2. The parameterized coordinates, which reduce to the particle

end-state coordinates at the bounding limits of integration, are presented in Equation 12.

(12)

Solution of Equation 11 along the direct integration pathline is represented in Equation 13,

where the interpolation derivatives are appropriately labeled.
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(13)

Since the parameterized coordinates are linear functions, their derivatives are constant

finite-difference vectors: , , and . These

difference vectors are defined between particle States 1 and 2: , ,

and . Integration of the parameterized total-differential along the direct

pathline can then be simplified as presented in Equation 14.

(14)

The parameterized transformation matrices within Equation 14 are formed by substituting

 and  from Equation 12 into Equations 4 and 8. Solution of Equation 14 is then

straightforward, and many expansions may be obtained. The three discrete-expansions most

easily obtained using the direct integration pathline are presented in Equation 15.

(15)

The linear discrete-expansions in Equation 15 are similar to a Taylor’s series of a linear

function: they are combinations of first-order interpolation derivatives scaled by  and .

Arguments for the transformation matrices are either particle end-state coordinates, coordinate

differences, or coordinate averages:  and .

Upper-Step Integration Pathline
The second integration pathline used to solve Equation 11 is comprised of two line-

segments that form an upper-step within the  plane. The first pathline segment is a line of

constant  from State 1 to State A; see Figure 2. The second pathline segment is a line of constant

 from State A to State 2. The parameterized coordinates are presented in Equations 16 and 17.

X s( )∂
s∂

--------------
1 2→

sd
0

1

∫ X∂
ξ∂

------- X
cv

s( )( )
1 2→

ξ s( )∂
s∂

-------------
1 2→

sd
0

1

∫=

X∂

X
cv

∂
-------------- ξ s( )( )

1 2→

X
cv

s( )∂
s∂

-------------------
1 2→

sd
0

1

∫+

X s( )∂ s∂⁄ ∆X= ξ s( )∂ s∂⁄ ∆ξ= X
cv

s( )∂ s∂⁄ ∆X
cv

=

∆X X2 X1–= ∆ξ ξ 2 ξ1–=

∆X
cv

X2
cv

X1
cv

–=

∆X sd
0

1

∫ X∂
ξ∂

------- X
cv

s( )( )
1 2→

∆ξ sd
0

1

∫ X∂

X
cv

∂
-------------- ξ s( )( )

1 2→

∆X
cv

sd
0

1

∫+=

ξ s( ) X
cv

s( )

∆X
X∂
ξ∂

------- X̂
cv

( ) ∆ξ X∂

X
cv

∂
------------ ξ̂( ) ∆X

cv
+=

∆X
X∂
ξ∂

------- X1
cv

( ) ∆ξ X∂
ξ∂

------- ∆X
cv

( ) ∆ξ X∂

X
cv

∂
------------ ξ1( ) ∆X

cv
+ +=

∆X
X∂
ξ∂

------- X2
cv

( ) ∆ξ X∂
ξ∂

------- ∆X
cv

( ) ∆ξ–
X∂

X
cv

∂
------------ ξ2( ) ∆X

cv
+=

∆ξ ∆X
cv

ξ̂ ξ1 ξ2+( ) 2⁄= X̂
cv

X1
cv

X2
cv

+( ) 2⁄=

ξ X
cv

,( )
ξ

X
cv



LA-UR-00-3330

9

(16)

(17)

 The upper-step integration pathline does not constitute cell-based partition of the original,

non-parameterized total-differential. Integration of Equation 10, however, can be rewritten to

simulate the upper-step integration pathline as presented in Equation 18.

(18)

Parameterization of Equation 18, the upper-step integration pathline, is represented in

Equation 19, where the interpolation derivatives are appropriately labeled.

(19)
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Along the entire upper-step pathline . Integration of the parameterized total-

differential along the upper-step pathline can then be simplified as presented in Equation 20.

(20)

The parameterized transformation matrices in Equation 20 are formed by substituting

 and  from Equations 16 and 17 into Equations 4 and 8. Solution of Equation 20 is

then straightforward, and many expansions may be obtained. The single discrete-expansion most

easily obtained using the upper-step integration pathline is presented in Equation 21.

(21)

Within Equation 21,  is evaluated at ; the logical-coordinates vary along the

pathline segment where  is fixed at State 2. Similarly,  is evaluated at ; the cell-

vertex coordinates vary along the pathline segment where  is fixed at State 1.

Lower-Step Integration Pathline
The third integration pathline used to solve Equation 11 is comprised of two line-segments

that form a lower-step within the  plane. The first pathline segment is a line of constant

 from State 1 to State B; see Figure 2. The second pathline segment is a line of constant 
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 Integration of the non-parameterized total-differential, Equation 10, can be rewritten to

simulate the lower-step integration pathline as presented in Equation 24.

(24)

Parameterization of Equation 24, the lower-step integration pathline, is represented in

Equation 25, where the interpolation derivatives are appropriately labeled.

(25)

Along the first segment of the lower-step integration pathline from State 1 to State B,

where  is constant,  and . Along the second pathline

segment from State B to State 2, where  is constant,  and .

Along the entire lower-step pathline . Integration of the parameterized total-

differential along the lower-step pathline can then be simplified as presented in Equation 26.

(26)

The parameterized transformation matrices in Equation 26 are formed by substituting

 and  from Equations 22 and 23 into Equations 4 and 8. Solution of Equation 26 is

then straightforward, and many expansions may be obtained. The single discrete-expansion most

easily obtained using the lower-step integration pathline is presented in Equation 27.

(27)

The lower-step discrete-expansion, Equation 27, is similar to the upper-step expansion,

Equation 21. While the form of these discrete-expansions is identical, their interpolation
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derivatives are evaluated at opposite particle end-states; the upper-step and lower-step integration

pathlines are mirror images of each other. Within Equation 27, the coordinate-transformation

matrix is evaluated at  and the geometry-transformation matrix is evaluated at .

The discrete-expansions in Equations 15, 21, and 27, developed for linear interpolation

defined in triangular cells, are a simplification of the trilinear [8,9] and bilinear expansions [10];

linear interpolation is more simple than a multi-linear function. Furthermore, the upper-step

discrete-expansion within Equation 21 is the linear version of the trilinear expansion which was

obtained using the finite-difference method. The total-differential and finite-difference methods,

therefore, produce identical discrete-expansions for similar interpolation functions. Finally, a

truncated, single-variable Taylor’s series expansion of linear interpolation may be obtained if

 is substituted within any of the above multi-variable discrete-expansions.

However, unique discrete-expansion formulations are possible for linear interpolation; the

transformation matrices are easily manipulated since they are linear functions of  and . Two

expansions in Equation 15 include transformation matrices that are evaluated at the identical

particle end-state. A second Jacobian matrix, evaluated with , also appears in these

expansions. The form of these two expansions is not repeated in the multi-linear solutions.

Furthermore, these direct-pathline expansions are related to the other linear discrete-expansions;

they are equivalent to the upper-step and lower-step expansions in Equations 21 and 27.

Summary

Five discrete-expansions were developed for linear interpolation defined within two-

dimensional triangular cells. Discrete-expansions are similar to multi-variable expansions, but

unlike a Taylor’s series, they are valid throughout a discretized domain; they account for

interpolation discontinuities across cell boundaries. The new expansions were developed by

parametrically integrating the interpolation function’s total-differential between two particles

located in separate, non-contiguous cells. The linear-interpolation expansions are a simplification

of multi-linear discrete-expansions, but they exhibit unique formulations. Finally, discrete-

expansions can be simplified to obtain a truncated, single-variable Taylor’s series expansion.

Acknowledgement

This work was sponsored by the Accelerated Strategic Computing Initiative Program at

the Los Alamos National Laboratory. Thanks to Forrest B. Brown, John H. Hall and Stephen R.

Lee of the Blanca Project for their support of this investigation. Much thanks to James R. Kamm

and Gary L. Sandine of the Applied Physics Division for assistance in this research.

X1
cv

ξ2

X2
cv

X1
cv

=

ξ X
cv

∆X
cv



LA-UR-00-3330

13

References

1) Allievi, A. and Bermejo, R., “A Generalized Particle-Search Algorithm for Arbitrary Grids,”

Journal of Computational Physics, Vol. 132, pp. 157-166, 1997.

2) Lohner, R., “Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids,”

Journal of Computational Physics, Vol. 118, pp. 380-387, 1995.

3) Westerman, T., “Localization Schemes in 2D Boundary-Fitted Grids,” Journal of

Computational Physics, Vol. 101, pp. 307-313, 1992.

4) Lohner, R. and Ambrosiano, J. “A Vectorized Particle Tracer for Unstructured Grids,” Journal

of Computational Physics, Vol. 91, pp. 22-31, 1990.

5) Wilson, T. L., “LINTERP: A Numerical Algorithm for Interpolating Quadrilateral and

Hexahedral Meshes,” Los Alamos National Laboratory Report LA-11902-MS, 1990.

6) Brackbill, J. U. and Ruppel, H. M., “FLIP: A Method for Adaptively Zoned, Particle-in-Cell

Calculations of Fluid Flows in Two Dimensions,” Journal of Computational Physics, Vol. 65, pp.

314-343, 1986.

7) Pracht, W. E. and Brackbill, J. U., “BAAL: A Code for Calculating Three-Dimensional Fluid

Flows at All Speeds with an Eulerian-Lagrangian Computing Mesh,” Los Alamos National

Laboratory Report LA-6342, 1976.

8) Brock, J. S., “A Finite-Difference Logical-Coordinate Evaluation Method For Particle

Localization,” Progress of Theoretical Physics, Sup. 138, pp. 40-42, 2000. (Los Alamos National

Laboratory Report LA-UR-99-6493, 1999.)

9) Brock, J. S., “A New Logical-Coordinate Evaluation Method For Particle Localization,” Los

Alamos National Laboratory Report LA-UR-99-5355, 1999.

10) Brock, J. S., “Integrating a Bilinear Interpolation Function Across Quadrilateral Cell

Boundaries,” Los Alamos National Laboratory Report LA-UR-00-3329, 2000.



LA-UR-00-3330

14

Appendix A: Test Problem

The purpose of this appendix is to demonstrate that the five discrete-expansions presented

in this report, developed for two-dimensional linear interpolation, are valid across triangular cell

boundaries. The following verification has been performed for each expansion in Equations 15,

21, and 27. Within this appendix, however, only one discrete-expansion is used to solve the

general problem of two particles located in separate, non-contiguous grid cells. The expansion

selected for this demonstration, originally presented in Equation 15, is repeated in Equation A-1.

(A-1)

A particle’s state may be defined in two spatial-dimensions as a set of physical-

coordinates, , logical-coordinates, , and cell-vertex coordinates,

. The only restriction on particle states is that they must form a consistent

set of coordinates as described by the interpolation function: . The two particle

states used for this demonstration, State 1 and State 2, are defined in Equations A-2 and A-3.

(A-2)

(A-3)

The discrete-expansion in Equation A-1 includes two first-order interpolation derivatives,

 and . Both transformation matrices are evaluated with average logical-

coordinates and average cell-vertex coordinates:  and .

For this demonstration, these average coordinate vectors are presented in Equation A-4.

(A-4)
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The first-order interpolation derivatives in Equation A-1 are scaled by the finite-difference

vectors  and . These vectors are presented in Equation A-5.

(A-5)

The Jacobian matrix in Equation A-1, , was presented in Equation 3 for two-

dimensional coordinate transformations. The elements of this matrix were defined in Equation 4.

The geometry-transformation matrix, , was presented in Equation 5. The product of this

matrix and the finite-difference vector  is presented in Equation A-6.

(A-6)

As previously noted, the non-square geometry-transformation matrix may be partitioned

into diagonal sub-matrices:  where . The non-zero elements of each sub-

matrix are identical; they are one of the three linear interpolation basis functions. Each sub-matrix

may then be defined as an identity matrix scaled by a basis function. The matrix-vector product in

Equation A-6 may then be simplified as presented in Equation A-7.

(A-7)

The derivatives and coordinate finite-difference vectors for linear interpolation, required

by each discrete-expansion presented in this report, have been defined analytically. The

interpolation derivatives were presented as a function of the vectors  and . In contrast, the

interpolation derivatives in Equation A-1 are evaluated with the average vectors  and .

These average coordinate vectors were defined in Equation A-4. The coordinate finite-difference

vectors  and  were defined in Equation A-5. The algebraic form of Equation A-1,

including matrices, vectors, scalars, and their products, is presented in Equation A-8.
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(A-8)

Equation A-8 correctly predicts the finite-difference in particle physical-coordinates

between State 1 and State 2: . Any symmetry or structure exhibited in Equation

A-8 is not an inherent feature of discrete-expansions. Instead, these features are an artifact of the

test problem. This test problem clearly demonstrates that the five discrete-expansions presented in

this report are valid expansions for linear interpolation across triangular cell boundaries.
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